Towards Lexical Semantic Analysis of Tweets

Paul Cook

Department of Computing and Information Systems
The University of Melbourne

Joint work with Timothy Baldwin, Spandana Gella, and Bo Han

Research Overview

- Computational lexicography
- Neologisms and new word-senses
- Word sense induction
- Web corpus construction and evaluation
- Multiword expressions
- Social media processing

NLP for Social Media

- Lots of research in NLP for Twitter
 - Event detection, sentiment analysis, text-based geolocation
 - POS tagging, NER, lexical normalisation

NLP for Social Media

- Lots of research in NLP for Twitter
 - Event detection, sentiment analysis, text-based geolocation
 - POS tagging, NER, lexical normalisation
- Lexical semantics?

Lexical Semantics on Twitter

- Little work to-date
- Short, noisy text: Challenging for traditional approaches
- Lexical semantics might benefit applications
- Learn how social media and conventional text differ

This Talk

- Word usage patterns on Twitter
- Word usage similarity for Twitter

Word Usage Patterns

Conventional text

- One sense per discourse
- First-sense heuristic

Word Usage Patterns

Conventional text

- One sense per discourse
- First-sense heuristic

Twitter

One sense per tweeter?

Word Usage Patterns

Conventional text

- One sense per discourse
- First-sense heuristic

Twitter

- One sense per tweeter?
- First-sense heuristic?

One Sense per Tweeter?

User1

- wrap your hands around your elbows and maintain the **position** for a few seconds
- Look at this elegant yoga position: URL

User2

- Growing up I somehow knew I would be in this position.
- check out the programmer analyst (west corporation) position URL

First-sense Heuristic for Twitter?

- Lmao like I don't do that to every paper lol smh
- We loved making paper boats as kids. I feel sorry for kids now a days who don't know how to make one.
- Will Raptors easy playoff stretch run on paper result in third place in NBA East? URL #raptors

Motivation

One sense per tweeter

- Lack of context (\leq 140 characters)
- Address this via user-level sense priors
- Understanding of user-level word usage

First-sense heuristic

Effectiveness of first-sense WSD

Resources

- Sense inventory: Macmillan Dictionary
 - Coarse-grained senses
 - Regularly updated
- Target lemmas: 20 nouns
 - High-to-mid frequency
 - Medium polysemy: ≥ 3 senses (ave. 5.5)

Datasets

- 4 datasets: {TWITTER, UKWAC} × {RAND, USER}
- UKWAC: More-conventional (web) text
- RAND: Random sample of usages
- USER: 5 usages from each user/document
- 2000 items each: 100 usages of each noun

Annotation

- Amazon Mechanical Turk
- For each usage, pick the most appropriate sense(s), or "other"
- Quality control
 - Included some gold-standard Macmillan example sentences in each HIT
 - Filtered annotations based on accuracy over these items
- Fleiss' Kappa: 0.47–0.71
- Final annotation via unweighted voting

Analysis

Average proportion of users/documents using a noun in the same sense across all 5 usages

• Twitter_{user}: 65%

• UKWAC $_{\mathrm{DOC}}$: 63%

One sense per tweeter heuristic is as strong as one sense per discourse

	Partition	Agreement (%)
Gale et al. (1992)	document	94.4
$Twitter_{user}$	user	95.4
$Twitter_{user}$		62.9
$TWITTER_{RAND}$		55.1
UK WAC_{DOC}	document	94.2
$UKWAC_{DOC}$		65.9
$UKWAC_{RAND}$	_	60.2

	Partition	Agreement (%)
Gale et al. (1992)	document	94.4
T WITTER $_{USER}$	user	95.4
$Twitter_{user}$		62.9
$TWITTER_{RAND}$		55.1
$UKWAC_{DOC}$	document	94.2
$UKWAC_{DOC}$		65.9
$UKWAC_{RAND}$		60.2

	Partition	Agreement (%)
Gale et al. (1992)	document	94.4
$Twitter_{user}$	user	95.4
$\mathrm{TWITTER}_{\mathrm{USER}}$		62.9
$TWITTER_{RAND}$		55.1
UK WAC_{DOC}	document	94.2
$UKWAC_{DOC}$		65.9
$UKWAC_{RAND}$	_	60.2

	Partition	Agreement (%)
Gale et al. (1992)	document	94.4
$Twitter_{user}$	user	95.4
$Twitter_{user}$		62.9
$Twitter_{rand}$		55.1
UK WAC_{DOC}	document	94.2
$UKWAC_{DOC}$		65.9
$UKWAC_{RAND}$		60.2

Analysis: First-sense Heuristic

Accuracy of an oracle first-sense WSD system

• Twitter_{rand}: 45.3%

• UKWAC_{RAND}: 55.4%

First-sense tagging is less accurate in Twitter data

Further Analysis

Comparing $TWITTER_{RAND}$ and $UKWAC_{RAND}$

- Sense distributions are less skewed on Twitter
 - \bullet Sense entropy lower for ${\rm UKWAC_{RAND}}$ for 15 nouns
- 8/20 nouns have different first senses
- More "Other" senses in Twitter data
 - Twitter_{rand}: 12.3%
 - UKWAC_{RAND}: 6.6%

Future Analyses

- One sense per conversation?
- Impact of time?
- Impact of geospatial and sociolinguistic factors?

Summary so far

- One sense per tweeter?
 - At least as strong as one sense per discourse
- First-sense heuristic?
 - First sense tagging is less accurate for Twitter
- Annotated dataset available soon

Further Analysis

Comparing $TWITTER_{RAND}$ and $UKWAC_{RAND}$

- Sense distributions are less skewed on Twitter
 - \bullet Sense entropy lower for ${\rm UKWAC_{RAND}}$ for 15 nouns
- 8/20 nouns have different first senses
- More "Other" senses in Twitter data
 - Twitter_{rand}: 12.3%
 - UKWAC_{RAND}: 6.6%

This Talk

- Word usage patterns on Twitter
- Word usage similarity for Twitter

Given a word in context, select the best-fitting sense from a sense inventory

ne1 headin to blue boyz footy match this weekend? #iamcarlton

Given a word in context, select the best-fitting sense from a sense inventory

ne1 headin to blue boyz footy match this weekend? #iamcarlton

 a formal contest in which two or more persons or teams compete

Given a word in context, select the best-fitting sense from a sense inventory

I think they are a perfect match! #cute #xoxo

Word Usage Similarity for Twitter

Word Sense Disambiguation (WSD)

Given a word in context, select the best-fitting sense from a sense inventory

I think they are a perfect match! #cute #xoxo

something that resembles or harmonizes with;
 "that tie makes a good match with your jacket"

Given a word in context, select the best-fitting sense from a sense inventory

I think they are a perfect match! #cute #xoxo

- something that resembles or harmonizes with; "that tie makes a good match with your jacket"
- a pair of people who live together; "a married couple from Chicago"

Word Usage Similarity for Twitter

Issues with WSD

- Choice of sense inventory
 - match.n: WordNet: 9 senses, Macmillan: 4 senses
- Cannot capture novel usage patterns
- Assumes a single sense per usage
- Existence of word senses has been questioned

Issues with WSD for Social Media

- Few sense tagged resources for social media
- Short, noisy, non-standard syntax
- More usages that don't match senses from conventional inventories

Issues with WSD for Social Media

- Few sense tagged resources for social media
- Short, noisy, non-standard syntax
- More usages that don't match senses from conventional inventories

Let's just do away with sense inventories

Usage Similarity (Usim)

- Manual task of rating the similarity of a pair of usages of a word (Erk and McCarthy 2009)
- Similarity on a graded scale (1-5)
- No more senses; independent of sense inventory
- Novel usages: Rate similarity to other usages

Word Usage Similarity for Twitter

Usim Example

- Setting goals for myself this year, figured if it's on paper I'll be more inspired to work harder.
- This is very unsmart of me to get tipsy and then have to go home and write a paper.

Annotators' judgement: 3.2

Word Usage Similarity for Twitter

Usim-tweet Dataset

- 10 nouns (from original Usim study)
- 55 pairs of tweets annotated per lemma
- Annotation via Amazon Mechanical Turk
- Rate similarity of usage pairs: 1–5, or unknown
- Quality control based on correlation with all other annotators

Modelling Usim for Twitter

- No large annotated training resources: unsupervised method
- No parser (yet): bag-of-words
- Methods:
 - Topic models (LDA)
 - Vector space model (VSM)
 - Weighted Textual Matrix Factorization (WTMF)
- 1 model per target word

Methods

- LDA (Our approach)
 - Represent documents as topic distribution vectors
 - Previously applied to model Usim, but not for social media (Lui et al., 2012)
- VSM (Baseline)
 - Second order co-occurrence
- WTMF (Benchmark)
 - Consider information from "missing" words related to the latent vector profile
 - State-of-the-art on a similar task

Topic Modeling — LDA

Background Corpora

- ORIGINAL: Tweets from Streaming API containing the target word as a noun
 - gotta 3 page paper due tomorrow haven start #procrastination
 - 17k 299k tweets per target
- HTEXPANDED: ORIGINAL + document expansion with extra tweets containing medium-frequency hashtags
 - @USER assignment due in 1 hour 15 minutes #letsdothis #procrastination
 - 19k 301k tweets per target
- EXPANDED: ORIGINAL + extra tweets containing the target word

Method Overview

- Build vectors using VSM, LDA, or WTMF representing each tweet
- Measure Cosine similarity of each usage pair
- Measure correlation between system similarity scores and gold-standard judgements

Results

Model	Original	HTExpanded	Expanded
Baseline	0.09	0.08	0.09
WTMF (d)	0.03 (8)	0.10 (20)	0.09 (5)
LDA(T)	0.20 (8)	0.29 (5)	0.18 (20)

Spearman's rank correlation (ρ) for each method based on each background corpus

Word Usage Similarity for Twitter

Results on HTEXPANDED

Lemma	Best	T = 5	
Lemma	ρ	Τ	ρ
bar	0.35	50	0.10
charge	0.33	20	-0.08
execution	0.58	5	0.58
field	0.53	10	0.32
figure	0.24	250	0.14
function	0.40	10	0.27
investigator	0.50	5	0.50
match	0.45	5	0.45
paper	0.32	30	0.22
post	0.20	30	-0.01
Overall	0.39	5	0.29

 ρ values that are significant ($\rho > 0.05$) are shown in bold

Results Varying T

 ρ versus number of topics (T)

Future Work

- Alternative document expansion: E.g., author-based
- Richer context representation: POS, positional word features, etc.
- Non-parametric topic modelling (e.g., HDP)

Usim Summary

- Proposed a computational model of usage similarity for Twitter
- LDA approach out-performed a baseline and benchmark
- Hashtag-based document expansion improved LDA

Summary

- Little work on lexical semantics for social media
- Social media contains many non-standard usages
- Can exploit user-level priors and social media structure
- Potential for new models of lexical semantics

Thanks